

 © 2018 Globaltronic

Micromouse
By Globaltronic

User manual A3

USER'S MANUAL 1 MICROMOUSE

M
M

k
it

INDEX

ÍNDICE ... 1

 .. 1

1 VERSIONS .. 3

2 CONTEXTUALIZATION .. 3

2.1 ROBOTICS .. 3

2.2 MICROMOUSE PORTUGUESE CONTEST ... 3

3 FUNCTIONS AND FEATURES OF MMkit .. 4

3.1 CARACTERÍSTICAS DE HARDWARE ... 4

4 PROGRAMMING ENVIRONMENT ... 5

4.1 INSTALLING THE ARDUINO IDE ... 6

4.2 ARDUINO IDE INTERFACE .. 6

5 MMkit INSTALLATION AND CONFIGURATION ... 11

5.1 EQUIPMENT ... 11

5.2 MANUAL INSTALLATION OF DRIVERS .. 12

5.3 MMKit IDENTIFICATION ... 13

6 LIBRARIES INSTALLATION .. 13

7 USE THE MMkit .. 15

7.1 UPLOAD THE FIRST SKETCH (LED flashing) ... 15

7.2 SKETCH EXAMPLES FROM THE MMKit LIBRARY .. 16

7.2.1 PROJECT 1: Turn on LED with button ... 16

7.2.2 PROJECT 2: Measure distances using IR LED ... 17

7.2.3 PROJECT 3: Move Forward (Move the MMkit) .. 19

7.2.4 PROJECT 4: Move Forward (With interruptions) ... 20

7.2.5 PROJECT 5: RandomNextMove (algorithm) .. 21

7.2.6 PROJECT 6: RightWallFollow (algorithm) .. 23

7.2.7 PROJECT 7: Train the mazes with simulators ... 24

8 GLOSSARY... 27

 MICROMOUSE M
M

k
it

 2 USER'S MANUAL

USER'S MANUAL 3 MICROMOUSE

M
M

k
it

1 VERSIONS

HARDWARE

A8

FIRMWARE

1.1

SOFTWARE

A4

2 CONTEXTUALIZATION

Before we take a closer look at MMkit, it is important to understand the context in which it is embedded and the scope in

which it arose. For this we will briefly cover terms such as "Robotics" and “Micromouse Portuguese Contest”, concepts that

will later allow us to better understand the MMkit.

2.1 ROBOTICS

Robotics is a branch of technology that is responsible for planning and building automated machines, covering areas such

as mechanical, electrical and electronic engineering, including also various branches of physics and computer science. They

deal with systems composed by machines and mechanical parts that are automated and managed by integrated circuits.

Robotics works with the mechanical part of the movements, in other words, it works with the devices that act in their

displacement or in some functionality that makes it interact with the environment, as well as with the computational part that

develops all the programming inherent to the movement itself. It develops electromechanical devices, capable of performing

tasks in a pre-programmed or autonomous way.

2.2 MICROMOUSE PORTUGUESE CONTEST

The “Micromouse Portuguese Contest” is a robotics contest where competitors put their robots to compete for intelligence

and speed in solving a specific maze. robot participating in this contest is called “Micromouse”. The contest is organized

annually by the Robotics Nucleus (EEC/NEUTAD) of the University of Trás-os-Montes and Alto Douro. This is the portuguese

version of the contest started in Japan in the 1970s. “Micromouse” events are held all over the world, being the most popular

in the United Kingdom, USA, Japan, Singapore, India and South Korea.

The labyrinth (Img 1) is composed by a matrix of 16 by 16 cells, each

cell is a square of 180 mm, having the walls being 50 mm high.

“Micromouses” are completely autonomous robots that must find the

path of the labyrinth, from a predetermined position to the central area

of the same.

After the meta is reached, the robot usually performs additional

searches of the maze until it finds an ideal route from the beginning to

the center, within a limit time of 10 minutes. Once the optimal route is

found, the robot will try to execute this route in the shortest possible

time.

\

Img 1 Example of a 16 by 16 matrix maze.

 MICROMOUSE M
M

k
it

 4 USER'S MANUAL

3 FUNCTIONS AND FEATURES OF MMkit

MMkit is a physical platform based on an embedded system transformed into a robot (Img 2). It aims to be an educational

robotics kit intended for the learning and development of robots whose main purpose is to solve a maze. MMkit is a complete

and high-performance robotic platform. It involves sensors that acquire information about the robot surroundings, actuators

that allow the robot to influence its surroundings, and a controller that gives the robot the ability to process information about

it and select “responses” to its stimulus.

It is programmed through the use of C language with the ARDUINO programming environment (see glossary) IDE. The

ATmega32u4 model microcontroller present in the robot has the “bootloader” (see glossary) of the Arduino Leonardo, so the

robot is programmed as if it were an Arduino. One of the advantages and big differences of the Atmega32u4 is that it has an

integrated USB communication port, not requiring a secondary processor used only for communication.

3.1 CARACTERÍSTICAS DE HARDWARE

Dimensions (length, width, height): 103 x 92 x 33mm | Microcontroller: ATmega32u4 (integrated USB communication port) | Motor:

NEMA 8 motor (hybrid stepper bipolar motor with 1.8º step angle and 200 steps per resolution. Each phase consumes 600 mA at 3.9 V) | Motor

driver: DRV8834 (with 2 “H bridges” that allow the control of a bipolar stepper motor) | Infrared emitter led: SFH4511 (very narrow radiation

angle – 4th) | Phototransistor: TEFT4300 (with high radiant sensitivity and daylight filter).

Bluetooth Connector

Led Emitter 0

Led Emitter 1
Led Emitter 2

LED Pin 13 / Buzzer

Led Emitter 3

Right Motor

Batteries Support

LED On / Off

On / Off Batteries Button

Button

On / Off Battery Button

Phototransistor 2
Phototransistor 1

Right Motor Connector

±Jumper (turn on battery)

Left Motor

Phototransistor 0 Phototransistor 3

Control Switches Left Motor Connector

 Img 2 Explanation of the components from the micromouse robot

USER'S MANUAL 5 MICROMOUSE

M
M

k
it

4 PROGRAMMING ENVIRONMENT

As mentioned previously, MMit uses the Arduino IDE as the programming and development environment.

Both the hardware and the software for ARDUINO are “opensource”, which means that the code and assembly schematics

are accessible to anyone and can be used for free. This means that PCB schemes and designs themselves can be produced

(copied or changed) and even sold. This is not only allowed as it is fomented and is at the basis of the “opensource”

philosophy. The only requirement that the ARDUINO development team does to outsiders is that their name can only be

used exclusively by them in their own products, and therefore the cloned boards from an ARDUINO have names such as

Freeduino, BoArduino, Roboduino, among others.

The ARDUINO programming language is a “Wiring” (open source structured programming platform for microcontrollers),

which is based on the concept “Processing” (language and multimedia programming environment). To program the

ARDUINO microcontroller is convenient to use the ARDUINO “Integrated Development Environment” (IDE), which allows

to write programs in C language.

In ARDUINO IDE, a program is a sequence of instructions written in the text editor, followed by a compilation process

(identification of language errors) and upload to the memory of the microcontroller. The compilation procedure is a conversion

from written program text to machine code, capable of being interpreted by the final device. The programa is only executed,

when it is successfully loaded into the memory of the device. In the ARDUINO world, programs written by users are referred

to as “sketches” (see glossary) and the compiled code by “firmware”.

NOTE: In case of doubt, the MMkit uses mandatorily as development environment the Arduino IDE and does not work

with any other software type.

The exhaustive description of the ARDUINO language is outside the scope

of this manual. For a better understanding of the terms, concepts and

languages used, search in:

→ Introduction: what is an ARDUINO and why will you want to use it

http://Arduino.cc/en/Guide/Introduction

→ Software installation

http://Arduino.cc/en/Guide/Windows

→ Description of the IDE (integrated development environment)

http://Arduino.cc/en/Guide/Environment

→ ARDUINO language reference

http://Arduino.cc/en/Reference/HomePage

→Sketches examples

http://Arduino.cc/en/Tutorial/HomePage

Img 3 ARDUINO IDE development environment

http://arduino.cc/en/Guide/Introduction
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FGuide%2FIntroduction&sa=D&sntz=1&usg=AFQjCNEReF8SWgAZySAD1N7IQ6hCSVDSqQ
http://arduino.cc/en/Guide/Introduction
http://arduino.cc/en/Guide/Windows
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FGuide%2FWindows&sa=D&sntz=1&usg=AFQjCNFizDOD6ZMYBQghWfy4CFsy1eiEqA
http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Guide/Environment
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FGuide%2FEnvironment&sa=D&sntz=1&usg=AFQjCNFZvFXdpm7qYMbMGR1IEP7OD6YqAA
http://arduino.cc/en/Guide/Environment
http://arduino.cc/en/Reference/HomePage
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FHomePage&sa=D&sntz=1&usg=AFQjCNEx4dZ_EY61dEC539MhVMOoCBnHeQ
http://arduino.cc/en/Reference/HomePage
http://arduino.cc/en/Tutorial/HomePage
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FTutorial%2FHomePage&sa=D&sntz=1&usg=AFQjCNHkINp3saLnDNCfcrmAk3MjaiDngg
http://arduino.cc/en/Tutorial/HomePage

 MICROMOUSE M
M

k
it

 6 USER'S MANUAL

4.1 INSTALLING THE ARDUINO IDE

➔ IDE INSTALLATION

Software download: http://Arduino.cc/en/Main/Software

NOTE: You must choose the specific installer for your operating system. Although ARDUINO IDE versions are available for

various operating systems, this manual will use Windows as a reference. In this case you can choose to install the IDE by

one of two methods: via installer (Windows Installer version) or via “portable” (Windows zip file version). The simplest method

is to use the “portable version that can be used without the need of installation.

On PCs with other operating systems where the procedures are slightly different, see the details for other cases in:

http://www.arduino.cc/en/Guide/HomePage

4.2 ARDUINO IDE INTERFACE

Behind the seemingly simplistic interface (Img 4), a

powerful programming tool is available.

The IDE is organized as follows: a toolbar at the top, the

code edit window in the middle, and the series output

window at the bottom. The toolbar has 6 buttons and

underneath it, a strip with tabs appears in the case of

the “sketch” (see glossary) having multiple files. The text

in each tab will be the file name of the respective

“sketch”.

There is also an additional button placed at the right

side that allows you to perform operations on the tab

strip. The toolbar buttons allow quick access to

frequently used menu functions.

 Img 4 Arduino IDE interface

2

1

3

4

http://arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/HomePage

USER'S MANUAL 7 MICROMOUSE

M
M

k
it

 TOOLBAR

 The Verify button (“Verify/Compile”) is used to verify that the written code text is correct.

 The Upload button, when pressed, loads the current code into the ARDUINO memory. In order for this to be

successful, it is necessary to previously make sure that the selected board and port (in the Tools menu) are correct. It is

recommended that you save the sketch file in a disk before sending. We also recommend checking the code before doing it

so, to ensure that there are no errors.

 The New button allows you to create a new sketch. You must enter a name and the path to save it. Whenever possible,

choose the directory displayed by default for this operation. After doing this, the tab bar above the code window will now

display a tab with the name given to the “sketch”.

 The Open button lists the “sketches” stored, the “sketches” examples and also allows to open a sketch in any location

of the file system.

 The Save button allows you to save the code. If the file has already been created it is updated, otherwise it works as

Save As, in which case it is necessary to indicate the name and the path to be given to the new file. When the save is

completed the message appears at the bottom of the code window: Done saving

 The Serial Monitor (Img 5) is a very useful tool, especially for clearing the code (debug (see glossary)). The monitor

shows the serial data transmitted by MMkit (through the USB port or serial port). You can also send serial data to MMkit

using the Serial Monitor. When the button is selected a new window is opened (Img 5), in this case with the title COM10,

since this is the serial port used in connection with the MMkit.

3

1

1 On the lower right side of the Serial Monitor you can select

the bidirectional serial communication (see glossary) data

rate between MMkit and PC. The default setting for the baud

rate is 9600 baud, which means that if we want to send a

certain text using this serial communication line (in this case

the USB cable), will be sent 9600 bits per second.

2 At the top of the window there is a blank text box that allows

you to set text to be sent to MMkit when you press the Send

button. Note that no serial data will be received by the Serial

Monitor or MMkit, unless this functionality has been properly

programmed in the sketch code that is loaded.

3 Finally, the central area is where the serial data received

from MMkit are displayed.

1

2

Img 5 Serial Monitor

 MICROMOUSE M
M

k
it

 8 USER'S MANUAL

 MENU BAR

At the top of the window there is a menu, as shown above, with the following items File (Img 6), Edit (Img 7), Tools (Img 8),

Sketch (Img 9) and Help (Img 10), each of them being a drop-down menu (when we click a panel with options unrolls).

In TOOLS, there are the options to select the Board:

"Arduino Leonardo" and the Serial Port that will be

used to communicate with the board. Here is also

available the Auto Format function that formats the

code to a more readable. The Archive Sketch option

allows you to compress and save the sketch in a ZIP

file. Finally, the option Burn Bootloader that can be

used to record an ARDUINO Bootloader (see glossary).

Img 6 File menu

4

The FILE menu contains the options: create New

“sketch”; Open and search “sketches” existing in

Sketchbook as well as Examples; Save or Save As the

actual sketch; Upload the sketch to the board; Print;

Preferences, where you can change various IDE

options; Quit which closes the IDE.

The EDIT menu provides the editing options that allow

you to Cut, Copy and Paste sections of code, Select

All the code, as well as Find certain words or phrases.

The Copy for Forum option will copy the code inside

the sketch window, but in a format that when pasted in

the ARDUINO Forum will be similar to the IDE. It also

includes the Undo and Redo options for the latest

changes.

Img 8 Tools menu

Img 7 Edit menu

USER'S MANUAL 9 MICROMOUSE

M
M

k
it

In the SKETCH menu we have access to the functions

Verify/Compile and Include Library which shows a list

of the available libraries, stored inside its folder of

libraries. For example, one of the libraries that can be

found, Stepper, which is a set of functions that can be

used in the code of a sketch to control a stepper motor.

Thus, including the Stepper library in a "sketch" we are

able to use the functions to control a motor. The user

can create his own function libraries, reuse them in

different projects, and thus avoid repeating complicated

code writing. There are also available the View Sketch

Folder and Add File options, which will be useful in

large projects in which it is convenient to break them

into several sketches, each one in your file and all in the

same directory.

The HELP menu presents a series of options that are

no more than a connection table to help on the

Environment IDE, the programming language of the

ARDUINO Reference, and other related aspects. The

About option shows various information about the

ARDUINO project, such as the current version and the

list of people involved in the development of this device.

One of the options available here, Find in Reference

(or by the shortcut Ctrl+Shift+F), is very useful since it

allows access to the information about a certain word of

the language from the code itself. To test this

functionality, in an open sketch in the IDE, place the

cursor over the word loop (see glossary) and

simultaneously press the Ctrl+Shift+F keys. A page of

the documentation of this function will appear in your

browser (Img 11).

Img 10 Help menu

Img 11 Page of the documentation loop opened through the shortcut

Ctrl+Shift+F

Img 9 Sketch menu

 MICROMOUSE M
M

k
it

 10 USER'S MANUAL

 SERIAL OUTPUT WINDOW

Back in the IDE window, there is an area in the lower part of the window where there are error messages (in red) that may

occur when trying to connect to the board, to compile or to load the code (Img 12). In the lower left corner, a number appears

that corresponds to the current cursor line. This information can be useful when looking for the line where there is a certain

error pointed out by the compiler in an error message.

2

Img 12 Error message example

Img 13 Example of uploading the sketch to the board

USER'S MANUAL 11 MICROMOUSE

M
M

k
it

5 MMkit INSTALLATION AND CONFIGURATION

The first time the PC is used to work with ARDUINO on WINDOWS or another operating system, some settings have to be

made. Once the PC is set up, there is no need to go through these procedures again.

5.1 EQUIPMENT

Computer with USB port | USB cable type A - B | 2 Batteries type AA 1.5V | Arduino IDE | MMkit

1 Place the MMkit board and the Micro USB type B cable on the table. Connect the cable to the Micro USB B port of the

MMkit.

2 Then plug the end of the USB cable (type A) into the USB socket of your PC. A small green LED that says "ON" lights up

to show that the board is powered. In WINDOWS is still missing a step to complete the use of MMkit for the first time: the

installation of the board drivers.

3 As the board does not have the “Plug and Play” feature, ARDUINO will not be recognized automatically and the process

will end with an error window. The solution involves manual installation of the drivers.

Img 14 Identification of mandatory equipment

Img 15 Connecting MMkit to PC

 MICROMOUSE M
M

k
it

 12 USER'S MANUAL

 5.2 MANUAL INSTALLATION OF DRIVERS

OPEN DEVICE MANAGER

1 In the ‘Other devices’ (Img 18) >> Choose ‘Arduino

Leonardo’

2 Right click on the device ‘Arduino Leonardo’ >>

choose the option “Update Software Driver...”

3 A window appears (Img 19) to search for the

Arduino IDE installation folder (usually in C:\ or

C:\Programs or where you unzipped it, if you chose

the zip version of the IDE) >> select the folder

Drivers that is inside. (This is the drivers folder that is inside

the folder where you saved the previously decompressed files. If

you are following the indications in the manual should correspond

to: C:\Arduino-1.6.7\drivers)

4 When you click “Next” (Img 19), the controller must

be installed and a message of success will be shown.

5 If the “software” is installed correctly, the list of

devices should show the Arduino Leonardo device

in the Ports (COM and LPT) (Img 20). If the board isn't

recognized, disconnect the USB port and reconnect

and repeat the process again from the beginning.

NOTE: Identifying this port is important since you will

need to use it in the serial port configuration in the

IDE.

When connecting MMkit to the PC for the first time, it

will try to recognize the board by displaying a window

(Img 16). Sometimes MMkit will not be able to self-install

(Img 17) and must follow the following steps to install it.

Img 19 Arduino IDE installation folder lookup window

Img 18 Device Manager: Identifying “other devices”

Img 20 Introducing Arduino Leonardo in the list of devices

Img 17 Software is not installed

Img 16 Board recognition

USER'S MANUAL 13 MICROMOUSE

M
M

k
it

 5.3 MMKit IDENTIFICATION

 After installing the “hardware”, the MMkit must be properly identified and selected in the Arduino IDE settings.

6 LIBRARIES INSTALLATION

As explained previously in the Sketch menu we have access to the Include Library function. In the following steps we will

download and import the MMkit library, AccelStepper and TimerOne.

1 Libraries download https://github.com/MMkit/MMKit

 https://code.google.com/p/arduino-timerone/downloads/list

2 Identify a folder corresponding to the library or a set of libraries by checking the structure of the folder (Img 23).

Normally, an Arduino library is composed by a folder

with a structure identical to that of the represented

figure, which includes:

Example Folder – Optional

File <library> .cpp

File <library>.h

keywords.txt – Optional

library.properties – Optional

Img 23 Type of a library folder

Img 21 Selecting the board, in this case “Arduino Leonardo”

1 Select version of the ARDUINO board (Img 21). In the

Tools menu, confirm if the board Arduino Leonardo is

selected in the section Board: “Arduino Leonardo”. If

this is not the case, select it.

2 To configure the USB port (Img 22), Click Tools again

and select the Port option. A list of the serial ports

available on your computer will be displayed, choosing

the one referring to the USB cable that connects to the

MMkit. You should select the port that was set when

installing the drivers.

Img 22 USB port configuration

https://github.com/MMkit/MMKit
https://code.google.com/p/arduino-timerone/downloads/list

 MICROMOUSE M
M

k
it

 14 USER'S MANUAL

3 Once the libraries have been downloaded and the corresponding folders have been identified, we will proceed to import

them, taking into account one of the following procedures.

Img 25 File to be deleted inside the MMkit library

Img 27 Folder to extract

Img 24 Import library

Img 28 Unzipped folder to store in the Arduino library

Img 26 File to import

VIA file.ZIP

1 After the MMkit library is downloaded, the

AccelStepper library needs to be extracted from the

MMkit zip folder.

Since this library is required for the control of stepper

motors. (for compatibility reasons we decided to include it in the

download).

2 Then delete the AccelStepper zip from the MMkit zip

folder (Img 25).

3 Proceed with the imports into the Arduino software as

follows: open the Sketch menu >> include Library >>

add Library (Img 24).

4 Choose the AccelStepper zip file that you just

extracted and import it (Img 26).

5 Repeat steps 2 and 3 for the MMkit and TimerOne

library.

MANUALLY

1 After the MMkit library is downloaded, unzip the library

file to be installed and, in this case, extract the folder

from the AccelStepper library as you did in the

previous procedure (Img 27).

2 Identify whether the folder corresponds to an Arduino

library or a set of libraries by checking the structure of

the folder.

3 Copy the library to the Arduino libraries folder:

Documents >> Arduino >> libraries (Img 28).

4 When the Arduino IDE restarts, the new library

should already be listed.

5 Repeat the same procedures for all libraries.

USER'S MANUAL 15 MICROMOUSE

M
M

k
it

7 USE THE MMkit

7.1 UPLOAD THE FIRST SKETCH (LED flashing)

Now that MMkit is plugged in and the drivers were successfully installed, you're ready to load your first sketch and try

ARDUINO for the first time.

Before creating a new project for the “micromouse”, the “sketches” example included in the library should be tested to better

understand of its operation. Example of “sketches” can be loaded from the library submenu in File >> Examples (Img 29). In

this case, we will choose the Blink option (Img 30).

During the loading time of the sketch (in this case lasts

a few seconds) notice the small RX and TX LEDs (red

and green led) (see glossary). The board is receiving the

new program via serial communications. In the lower

section of the IDE window, several messages can be

read while loading:

1 Compiling sketch

2 While the data is sent to the board, the message

“Uploading” is displayed with a progress bar during the

process.

3 Finally, the "Done Uploading" confirmation message

appears.

At this point the RX and TX LEDs go off, the MMkit

automatically resets and starts executing the sketch

that was loaded in its memory. The Blink sketch is very

simple and only serves to blink the red LED.

If the red LED is blinking with a fixed time interval;

congratulations your MMkit, PC and IDE are correctly

configured, if not, then we will have to try to reconfigure

the board. Next, some brief explanations of sketch

examples from the MMkit library in order to know their

functions.

Img 31 Example of MMkit with LEDs turned on

Img 29 Open a sketch from the File menu

Img 30 Blink code

 MICROMOUSE M
M

k
it

 16 USER'S MANUAL

DISCUSSÃO DO SKETCH

The MMkit is equipped with a red LED connected to the

pin 13 of the microcontroller and the control switch with

two buttons connected to the pins 2 and 3, respectively.

By its configuration, when the switch has the buttons

turned to the right, they are connected, that is, the red

LED turns on. If they are turned to the left, they are

turned off.

Inside the void setup function (Img 32) (see glossary) we

configure the pins (pin mode (see glossary)) that initialize

and define the initial values, being executed only once.

In this case, we are considering that the buttons

connected to the buttons are INPUT, which will allow us

to read the button (whether it is on or off). The pin 13

(red button) will be configured as OUTPUT, that is, it will

provide power to turn the LED on or off. We can see this

example on 13, 14 and 15 line (Img 32).

→ It is from line 19, inside the function void loop{}

(see glossary), that the program to execute will be written.

7.2 SKETCH EXAMPLES FROM THE MMKit LIBRARY

Before creating our own projects for the micromouse, in the following points we will approach in more detail and clarity some

sketches of the MMkit library, that will allow us to better understand the practical usability of its functions and how they can

interact with each other in order to make the process of developing a project for the micromouse as intuitive as possible.

7.2.1 PROJECT 1: Turn on LED with button

In this project, what is intended objectively is by buttons (control switch) to turn the red LED on or off. To do this write the

code shown below (Img 31).

In the line 21 (Img 32) we start the if condition (see glossary) by a boolean operator (see glossary) OR (||), which tells us if pin

3 or pin 2 has been changed (on or off), through digitalRead() (see glossary).

ON OFF
pin 3

pin 2

ON OFF

Pins ON (red light on)

SKETCH

Pins OFF (red light off)

Img 32 Example of Sketch (turn on LED with button)

Img 33 MMkit examples with the on and off buttons

USER'S MANUAL 17 MICROMOUSE

M
M

k
it

In lines 22, 23 and 24 (Img 32), if the above condition is confirmed then we will turn the LED on or off. In this sense if the pins

are ON the red LED will turn on: DigitalWrite(13, HIGH) (see glossary), otherwise, if they are OFF, it will turn off:

DigitalWrite(13, LOW) (see glossary).

7.2.2 PROJECT 2: Measure distances using IR LED

In this project you will learn some concepts related to the LEDs (see glossary emitters and the phototransistors mounted on

your MMkit. Let's make the brightness of the mounted LED vary in intensity depending on how far a white object is from your

MMkit.

P
ho

to
tr

an
si

st
or

 3

P
ho

to
tr

an
si

st
or

 2

P
ho

to
tr

an
si

st
or

 0

The MMkit is equipped with 4 IR emitters (infrared) (Img

34), 2 front and 2 diagonals, these LEDs are connected

to pins 4, 5, 6 and of the microcontroller. In the following

Sketch we will connect the IR LEDs for 3 micro seconds

and turn them off immediately. It is important not to keep

these LEDs turned on for too long as they receive about

1 ampere current and would eventually burn. The IR

light is not visible to the naked eye, so to visualize

the LEDs in operation, you must use the camera of

your mobile phone.

The MMkit is also equipped with phototransistors that

are responsible for reading the values of the IR light

reflected in the objects, the distance will always be a

function of emitted light versus sensitivity of the

receiver. The photoreactors (Img 34) are connected to

the A0, A1, A2 and A3 pins.

One of the most common problems with IR readings is

interference from the ambient light. To reduce this, an

efficient algorithm is used. First, it gets a reading of the

IR sensors (dark_read), turns on the IR LEDs, waits a

little and reads the value on the ADC of the sensors

(light_read) then turns off the LEDs. The value will the

difference between read_light and dark_read.

Le
d

E
m

is
so

r
3

P
ho

to
tr

an
si

st
or

 1

D
is

tâ
nc

ia

Le
d

E
m

is
so

r
2

Le
d

E
m

is
so

r
1

Le
d

E
m

is
so

r
0

Img 34 Identification of phototransistors and emitter LEDs

Img 35 Measurement of the distance between MMkit and the wall

 MICROMOUSE M
M

k
it

 18 USER'S MANUAL

→ In this project we will make the red LED glow depending on how far the object is from the MMkit.

The readIRSensors() (see glossary) function performs the procedure for reading the IR sensors referred to above. This function

stores the read values into an array (set of values assigned to a variable) IRsensorsValues[]. Thus, we will have the value

corresponding to the right sensor in IRsensorsValues[1], The front right sensor in IRsensorsValues[0], The front left sensor

in IRsensorsValues[3] and the left sensor in IRsensorsValues[2] (Img 36).

→ Before we move on to the sketch, we will make a small preamble to talk about the map() function (see glossary).

The analog output of the MMkit is 8 bits, that is, it can simulate values between 0 and 255 (28 − 1), being the inputs 10 bits, that is, the

input value will be represented between 0 and 1023 (210 − 1). The map() function will be used to transform input range values (0 to

1023) into output range values. map(valorEntrada, 0, 1023, 0, 255), where the valorEntrada is the value that we want to convert. This

way, when the entry has the value 1023 the output of the map() function will be 255.

In analysis of the figure we verify that the distance from the

MMkit to a frontal wall will be given by the values of

IRsensorsValues[0] and IRsensorsValues[3]. In this first

example we will use the sum of these values and divide them

by 2 to calculate the distance to the obstacle (Img 36).

Grigoras.IRsensorsValues [0] + Grigoras.IRsensorsValues [3]/2

 IRsensorsValues[0]

SKETCH DISCUSSION

→ In line 19 (Img 37) is called the statement that auto

configures MMkit. This function is responsible for

defining the output ports for controlling the motors, for

defining the LED port 13 (which we will use in this

example), as well as other functions necessary for its

operation.

→ In the Loop routine (see glossary) the function of line

25 (Img 37) Grigoras.readIRSensors(); is responsible

for the sensor reading algorithm. When 2

phototransistor readings are made, one with the IR

LEDs turned on, other with them turned off, the values

are subtracted and stored into the IRsensorsValues[]

array.

→ In lines 27 and 29 (Img 37) we print the read values

to the serial port so we can see the value that each

sensor is reading.

→ In line 31/32 (Img 37) we create a variable with the

name valorEntrada and we assign the value of the

average of the 2 read sensors.

IRsensorsValues[3]

SKETCH

Img 36 Example of IR sensors used to read a front wall

Img 37 Code to measure distances using the IR LED

USER'S MANUAL 19 MICROMOUSE

M
M

k
it

→ In line 34 (Img 37) we mapped the obtained value, so that it is between 0 and 255 and then write it in the LED 13. In this

way, as the distance gets smaller, the greater the intensity of the LED's brightness.

→ In line 36 (Img 37), the delay(100) (see glossary) serves to read the values in the serial port (can be increased or decreased).

7.2.3 PROJECT 3: Move Forward (Move the MMkit)

In this project we will make the MMkit move for the first time. For this we will use 1 of the pre-installed examples of the MMkit

library. Choose the menu File >> Examples >> MMkit >> Basic >> MoveFoward.

When we open the example, two tabs are opened simultaneously, the MoveFoward tab (Img 36) that gives us the program

to run and the accelaration tab (Img 39) that defines the acceleration() function, which calculates the acceleration based on

the speed and distance defined in the MoveFoward sketch.

1.

SKETCH DISCUSSION

→ In line 14 (Img 38) is called the statement that auto

configures the MMkit. This function is responsible for defining

the output ports to control the motors.

→ In line 16 (Img 38) the possible conditions for the robot are

listed. These movements can also be viewed as numbers

from 0 to 5 where 0 is the IDLE (see glossary) and 5 the STOP.

Line 17 (Img 38) STATE_MOV_IDLE, does nothing;

Line 18 (Img 38) STATE_MOV_FRONT, moves forward;

Line 19 (Img 38) STATE_MOV_RIGHT, turn right;

Line 20 (Img 38) STATE_MOV_LEFT, turn left;

Line 21 (Img 38) STATE_MOV_UTURN, turn back;

Line 22 (Img 38) STATE_MOV_STOP, stops;

→ In lines 25 and 26 (Img 38) 2 variables are created that

will save the movement to do (toMove) and done

(stateMovement). To walk forward we use the runSpeed

statement and to bend, the run statement.

→ In line 27 (Img 38) we define the speed that MMkit will

move in cm per second. Therefore, 10 means that it will walk

10 cm in a second.

 → In line 31 (Img 38) we define the distance that we want to

move the MMkit in cm. That means that we will move the

MMkit 20 cm forward.

SKETCH

Img 39 Acceleration function code

Img 38 MoveFoward code

 MICROMOUSE M
M

k
it

 20 USER'S MANUAL

→ In line 33 (Img 38) the Grigoras.waitForStart() statement forces MMkit to wait for the hand to be passed in front of the 2

sensors, right and front, allowing adjustment before MMkit starts.

→ Inside the loop we have a conditional statement if (see glossary). This statement checks if the condition inside it is true, if

it is, executes the first part, Grigoras.runSpeed(), that moves the MMkit to the speed specified previously, if it is false then

it will make the MMkit to stop.

→ The MAXIMUM SPEED that the MMkit allows is limited by the acceleration ramp, without ramp the maximum speed will

be 24 cm/s. An acceleration ramp is possible to reach speeds of about 3 meters/s, however, we advise caution in the use of

these speeds, as the motors can also jam.

7.2.4 PROJECT 4: Move Forward (With interruptions)

In this project we will put the MMkit to move using interrupts. To make it easier, we'll use the timerOne library that lets you

run interrupts more easily. In this way we open the ISRBlink example (Img 41) using the command File >> Examples >>

TimerOne >> ISRBlink and you will obtain the following sketch.

The sketch ISRBlink code (Img 39) will be diffused in the

Sketch MoveFoward (Img 38) so we can make a move

with interruption.

SKETCH MoveFoward

SKETCH ISRBlink

Img 40 MoveFoward code

Img 41 ISRBlink code

USER'S MANUAL 21 MICROMOUSE

M
M

k
it

But before we take a closer look at the scketch that allows us to move the MMkit using interrupts, we will briefly explain the

ISRBlink example, so later we will have a better understanding of the next “sketch”. This sketch will allow us to check the

red LED connected to the pin 13, turning on or off from 100000 in 100000 microseconds.

In line 7 (Img 41), inside the function void setup () (see glossary) we configure the pin 13 by assuming it as OUTPUT.

In line 9 (Img 41) we stipulate how often the timerIsr() function will be run. The measure unit set for the interrupt is in

microseconds.

In line 10 (Img 41) the timerIsr() function is executed through the Timer1.attachInterrupt(timerIsr) statement.

In line 25 (Img 41), the timerIsr() function defines the value of the pin 13, that is, if it is off (LOW) or on (HIGH), via the

digitalWrite(13, digitalRead(13) ^ 1) statement.

7.2.5 PROJECT 5: RandomNextMove (algorithm)

The RandomNextMove algorithm allows the user a first introduction to coordinate movement of the MMkit. To do this, go to

the File >> Examples >> MMkit >> Advanced >> RandomNextMove.

In addition to the new variables created, this example differs from the previous one by introducing two new steps in the loop.

For a better understanding we created a flowchart (Img 43) which will facilitate the reading of the code presented below.

SKETCH DISCUSSION

→ In line 20 (Img 42), after the timer1 will be executed

every 200 microseconds as defined in line 19 (Img 42).

Lower values can lead to the call of a new interrupt

without the previous one being finished since the

runSpeed statement takes between 90 and 150

microseconds according to the adjustments that the

MMkit have to make.

→ In order to combine the 2 projects, we went to the

ISRBlink sketch and place the line 9 and 10 (Img 41)

inside the void setup () and the statements that were

within the loop of the project 3 are now defined on the

line 26 inside the timerISR() function.

SKETCH MoveFoward with interruption

Img 42 Example of the combined MoveFoward and ISRBlink code

 MICROMOUSE M
M

k
it

 22 USER'S MANUAL

SKETCH DISCUSSION

The initial part of the code is very similar to the code

MoveFoward sketch code, it is introduced a small

change inside the loop() funtion (see glossary). This way,

we will approach these changes taking into account the

flowchart above (Img 43).

→ If MMkit has already reached the end of the last

statement, the statement in line 40 (Img 44) returns the

value “false”, making us follow the left side of the

flowchart running the instructions of lines 50, 51 e 52.

→ In line 50 (Img 44) we say that the variable turn is

false, so if the next statement is not a turn, we use the

runSpeed statement and not the run.

→ In line 51 (Img 44) we call the nextMove function

(giving it the value of the last move).

→ In line 52 (Img 44) we call the robotMove() function

which will cause the MMkit to move according to the

decided in the previous function.

→ Both the NextMove and the robotMove() functions

(Img 44), are defined inside the loop() function, which

we will explain next.

SKETCH

Img 43 Flowchart for a better reading and understanding of the code

Img 44 Example of the RandomNextMove code

USER'S MANUAL 23 MICROMOUSE

M
M

k
it

7.2.6 PROJECT 6: RightWallFollow (algorithm)

The RightWallFollow algorithm provides to the user a solution to solve the mazes with MMkit. This example can be accessed

in the tab “advanced”. Choose in the menu File >> Examples >> MMkit >> Advanced >> RightWallFollow.

When we open the example, 5 tabs are opened simultaneously, the RightWallFollow tab that will give us the program to

run, the acceleration tab, the nextMove tab, the odometry tab and the robotMove tab. In the last four are defined all the

functions that are called in RightWallFollow.

→ In line 84 (Img 45) if the previous move was to move

forward, then:

→ In line 85 (Img 45) we make a random with 2

hypotheses, either it returns 0 or 1.

→ In line 86 (Img 45) we add 2, so that, this choice falls

to either STATE_MOV_RIGHT or STATE_MOV_LEFT

and returns the value.

→ This allows us that, whenever we move forward, we

have the possibility to turn left or right. If the previous

move was to move to the left or to the right, the next

move will be to move forward.

→ In line 59 (Img 46) we have, once again, a switch that

allows us to choose between 4 options: IDLE, FRONT,

RIGHT, LEFT and by choosing, perform 2 operations:

1 Assign the variable to "turn" the value of "false", when

is not to change the direction, and orders it to move

forward.

2 rotate depending on the situation in which we find

ourselves.

→ In line 65 (Img 46 where the option will be to move

forward, “turn” will be false.

→ In line 67 (Img 46) is given the instruction to move

forward 18 cm.

Img 46 Example of the robotMove function

Img 45 Example of the nextMove function

 MICROMOUSE M
M

k
it

 24 USER'S MANUAL

-

7.2.7 PROJECT 7: Train the mazes with simulators

You can test new algorithms before implementing them in MMkit. For this we can use the maze-solver tool that will allow us

to simply perform new algorithms and test them.

 Available at one of the following addresses: (it is mandatory to have java installed)

→ https://code.google.com/p/maze-solver/

→ https://github.com/MMKit/MMKit

After downloading and installing the previous software, the following figure shows the maze-solver program running. In the

next point we will take a brief approach to the tool interface and how we can take advantage of it.

SKETCH DISCUSSION

→ Either in the RightWallFollow or RobotMove, the

code is very similar to that discussed in the

RandomNextMove example. The changes are on the

NextMove tab. In this case the decision is no longer

random and based on the previous instruction, but

based in the perception obtained from the walls: switch

(Grigoras.current_cell.wall).

→ It is important to remember that

Grigoras.current_cell.wall contains an 8-bit value in

which the last 3 represent the left, right and front walls.

0 (zero) corresponds to having no wall, and 1 means

that there is wall. By this means of this evaluation, a

new decision of the next movement of MMkit is made.

→ In the Odometry tab we calculate the position of the

robot, that is, it allows us to calculate the positioning

measurements.

→ As discussed and explained in section 7.2.3, the

acceleration tab defines the acceleration function.

SKETCH

Img 47 Example of the RightWallFollow code

https://code.google.com/p/maze-solver/
https://github.com/MMKit/MMKit

USER'S MANUAL 25 MICROMOUSE

M
M

k
it

 The first tab, Micro Mouse Simulator (Img 48), presents the current maze and on the right side we have the possibility

to choose the algorithms that will be executed when we press play.

 In the second tab, Maze Editor (Img 48), we can create different mazes, allowing us to add and remove walls and test

it later.

 In the third tab, AI Script Editor (Img 48), beside including templates examples, we can also create our own algorithms

and test their operation through the python language. This tab allows us to make quick code changes and immediately

execute a new simulation.

 In the fourth tab, Statistics Display (Img 48), allows us to compare the performance of different algorithms and

mazes.

As previously mentioned, the maze-solver simulator is based on the python language, so we will make some considerations

on how to facilitate the translation of the C language used in ARDUINO for python. For those who do not know, python is a

high-level, interpreted, and multi-paradigm language. One of its main features is to allow easy code reading and requiring

few lines of code.

For those who are not so familiar with the language in python, we will make some observations to facilitate the translation

into C language (Img 49).

1 2

1

3 4

2

3

4

Img 48 Maze Editor and Simulator interface

 MICROMOUSE M
M

k
it

 26 USER'S MANUAL

The nextStep function (Img 51) can be seen as our nextMove function (Img 50). In this way, giving the proper parallelism of

the language, it will be easy to transpose the code created here for the MMkit examples, replacing what is necessary in the

nextMove function.

Our functions for checking walls are Grigoras.isWallLeft(), Grigoras.isWallRight() or Grigoras.isWallFront() (Img 50), only

changing the name “Maze” for “Grigoras” (Img 51). These functions return 1, if there is a wall and 0 (zero), if there is no wall.

We can see in the example below, how the nextMove function would look like by applying the previous code. The variable

next (Img 50) is our nMove variable (Img 51).

Python

if maze.isWallLeft():

 next = nextMove;

 return nextMove;

Arduino

if (maze.isWallLeft()){

 next = nextMove;

 return nextMove;

}

In this language, the indentation

(space between left margin and

the text) fits really well in the

Arduino, so that the following

instructions are equivalent.

Img 51 Example of Python language code

Img 49 Example of translation of the python language to Arduino (C language)

Img 50 Example of Arduino language code (C language)

USER'S MANUAL 27 MICROMOUSE

M
M

k
it

Delay

digitalWrite

Debug

Bootloader

Boolean operator

Loop

IDLE

digitalRead

8 GLOSSARY

ARDUINO

ARDUINO is a physical platform for embedded computing. It is an interactive system, which through the use of hardware

and software allows to interact with the environment. In a simple way, ARDUINO is a mini computer that can be programmed

to process the inputs and outputs of your chip. For more information consult the site http://www.arduino.cc/

Debug means analyse. In general, we use this term when we want to understand a part of the execution of a code.

Bootloader is a small program that exists in the microcontrollers memory and is responsible for system boot activities. Parallel

to Windows, the bootloader is the boot of the operating system.

Boolean operator is a mathematical operation such as sum and subtraction, but is performed with operands True and False.

Loop is a statement (function), which is repeated continuously.

Delay is an Arduino instruction that blocks the code execution during a period of time. This time is defined between

parentheses in milliseconds, that is, 1000 is 1 second.

IDLE is a statement that means doing nothing (waiting state).

digitalWrite is a statement of the Arduino that allows you to write in the digital port (digital pin), the value 5 or 0 Volts (in

digital, 1 or 0). In general, the statement uses the words HIGH = 5, Volts = 1 digital and LOW = 0, Volts = 0 digital.

digitalRead is a statement that allows to read the value of the digital port indicated in parentheses.

 MICROMOUSE M
M

k
it

 28 USER'S MANUAL

SERIAL COMMUNICATION

pinMode

map

Void

Setup

Arduino Leonardo

pinMode identify in which state the Arduino's digital port should work (INPUT or OUTPUT).

The map function allows the user to convert the read values to other values.

Void word means that the function does not return any value.

Setup is the function that is only executed once, when the Arduino is rebooted.

Arduino Leonardo is the base model for the Micromouse.

Serial communication is a process of exchanging data between digital devices. All ARDUINO boards have at least one serial

communication port (which are also known as UART or USART ports). In serial communications, the data bits are transmitted

sequentially in a queue, one bit at a time. In ARDUINO the serial communication uses the digital pins 0 (RX) and 1 (TX) as

well as the USB interface with the PC, therefore it is not recommended to use the digital pins 0 and 1 for input / output when

we want to use serial communication in our sketches. The Arduino Leonardo has a second UART to UART1 that is connected

to the Bluetooth pins that to activate must use the statement Serial1.begin(9600) in the setup in substitution of

Serial.begin(9600).

GND

TX

5v

Img 52 Possible bluetooth connection

RX

USER'S MANUAL 29 MICROMOUSE

M
M

k
it

DIODE

Light Emitting Diode - LED

 A diode (Img 53) is a device that allows the passage of current in one direction only. In a hydraulic analogy, it is a valve that

allows the passage of water in only one of the directions. The diodes may be useful to prevent that, if someone accidentally

inverts the power and ground connections in a circuit, the circuit components are not damaged.

LED (Img 55) is the acronym of “Light Emitting Diode”. It is diode that when crossed by electric current emits light. There are

LEDs of the most varied colors and brightness, and can also emit ultraviolet or infrared light (used, for example, in the remote

controls of televisions). If we look closely to a LED, we will notice two things: one is that the legs are of different lengths and

the other is that one of the sides is not cylindrical but flat. This allows to identify that the longest leg is the anode (positive

pole) and that the shorter (or flat side) is the cathode (negative pole). For it to emit light, the longer leg must be attached to

the highest potential and the shortest to the lowest potential.

If the LED is turned in the reverse direction it will not be damaged (unless it is subjected to very high current), but since it

works as an insulator, there is no current flowing and therefore does not light up. When connected in the right direction, it is

essential that a resistance is connected in series with the LED to limit the current flowing through it, otherwise it can burn. In

addition to the normal ones that emit light of only one colour, there are also bi-coloured and tri-coloured. There are, for

example, so-called RGB LEDs that are made up of 3 encapsulated LEDs, one red, one green and one blue. The RGB LED

has 4 legs, one being the common lead (anode or cathode). By adjusting the brightness levels of R, G and B, a light of any

colour can be obtained. This is the principle used in each pixel of the monitors or TV.

Img 53 Diode by oomlout (1N4001 - DIOD-01) [CC BY-

SA 2.0 (http://creativecommons.org/licenses/by-sa/2.0)]

Img 54 Electrical diode symbol (By: Omegatron (Diode_symbol.svg) [CC BY-

SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL

(http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons)

Img 56 Some LEDs

(By Afrank99 (Own work) [CC BY-SA 2.0 (http://creativecommons.org/licenses/by-sa/2.0)], via

Wikimedia Commons)

Img 55 LED scheme

 MICROMOUSE M
M

k
it

 30 USER'S MANUAL

loop() AND setup() FUNCTION

FUNCTION

“FOR” STATEMENT

A function (sometimes referred as a procedure or subroutine) is a piece of code that can be invoked from another location

in the sketch. See example:

1. void setup()

2. {

3. pinMode(ledPin, OUTPUT);

4. }

In the line 1 are described details about the function such as “setup”. The text that appears before the function name

describes the return type and inside the parentheses, the input parameters. The code written between the symbols { and }

correspond to the body of the function (the actions or processing).

Once the function is set, it can be called whenever necessary. The line 3 corresponds to the call of the pinMode() function

with the input parameters “ledPin” and OUTPUT.

To know more details of the ARDUINO language, see also: http://www.arduino.cc/en/Reference/HomePage

There are two special functions that are part of all ARDUINO sketches: setup() and loop().

The setup() function is executed only once, only at the beginning of the program. In it must be the tasks necessary to prepare

the program, to enter the main cycle, such as configuring board pin operation modes, set serial baud rates, etc.

The loop() function is executed immediately and endlessly, that is, after setup() the ARDUINO sketch will be permanently

executing the loop(). These two functions should be included in all ARDUINO sketches even if they are not being used.

The for statement is used to repeat a block of code expressions. Usually, a variable is used to define the increment and stop

value. It is often used with arrays to perform repetitive operations on collected data or pins.

USER'S MANUAL 31 MICROMOUSE

M
M

k
it

“IF” STATEMENT

SKETCH

LOGICAL OPERATORS

LINEAR VOLTAGE REGULATOR

The if statement is an example of a control structure that aims to check whether a particular condition has been reached (or

not), and if so, execute the instructions in its code block (inside {...}). For example, if we want to connect a LED when the

variable x rises above the value of 500, we can write:

if (x>500){

 digitalWrite(ledPin, HIGH) ;

}

The logical or boolean operators are the following:

These logical operators can be used to test various conditions.

&& - will be true if both operands are true.

 | | - will be true if at least one of the operands is true.

 ! - only has one operand and inverts its logical value, that is, it will be true if the operand is false.

You can also use expressions that involve several logical operators. For example:

if (x==5 && (y==10 || z!=25)) { ... }

It is an active device (such as a transistor) for voltage regulation. The operating principle resembles a variable resistor which

continuously regulates a resistive voltage divider to maintain a constant output voltage. It is considered an inefficient method

since it regulates the voltage generating heat, on the other hand it is very cheap.

In the world of ARDUINOS, sketch is the designation given to programs made by users.

An ARDUINO sketch should always have the setup() and loop() functions, otherwise it will not work. See the setup() and

loop() functions.

 MICROMOUSE M
M

k
it

 32 USER'S MANUAL

PWM

ARDUINO Shields (Extensions)

DATA TYPE

PWM (Img 57), acronym of “Pulse-with modulation”, is a technique that allows, by digital signals, to emulate an analog result.

The digital control inherent in the microcontroller produces a square wave that stays in time in one of two possible states: 5V

(ON) or 0V (OFF). By regulating the time in which the signal remains in one state and the other, it is possible to modulate

the signal and, for example, control, the brightness of an LED, generate audio signals or control the speed of motors.

ARDUINO exposes the pins 3, 5, 6, 9, 10 e 11 with the PWM function. On these pins besides the digitalWrite() function that

allows you to write the values 0 or 1, the analogWrite(int i) function is also available which allows you to set values on a

scale from 0 to 255, such that analogWrite(255) corresponds to 100% of the time in state 1 (also known as duty cycle 100%),

while the analogWrite(127) corresponds to a duty cycle of 50% (that is, in a complete wave cycle, half the time is 0V and

another half is 5V).

ARDUINO can be extended through the interconnection of shields (Img 58 and 59) which are circuit boards that contain other

devices for specific use (e.g. GPS receivers, LCD monitors, Ethernet connections, etc.). These boards can simply fit onto

the top of the ARDUINO to allow additional functionalities. The use of shields is not strictly necessary, since the same circuits

can be mounted using a breadboard or even making our own extension boards.

Img 57 PWM

Img 58 Ethernet

Img 59 Relay Shield

USER'S MANUAL 33 MICROMOUSE

M
M

k
it

VARIABLE AND CONSTANT

The types of data we can use in sketches are following:

Each data type uses a certain amount of ARDUINO memory: some variables use only 1 byte, some 2, and others 4 or more

(1 byte is 8 bits). You cannot copy data from one data type to another, for example, if x is an int and y is a string then x = y

does not work because the two types of data are different.

Variables and constants are the elementary parts manipulated by a program. Both correspond to memory spaces in memory

for storing values.

A variable, during the execution of the program, can see the changed values.

Constants, as the name implies, cannot be changed during the execution time of the programs.

Both must be named so that they can be referenced. Some programming languages (ARDUINO language included) require

that when declaring a variable as defining the type and sometimes even set an initial value. See also data types.

